graphy in inorganic resists and phase manipulation. A possible application is to X-ray optics where the required thickness of the lens could be built up by repeatedly evaporating and patterning ~100 nm of AlF₃. Alignment could be retained by imaging with electrons (perhaps secondaries) emerging through the few rings of complete holes, provided stress in the film did not cause excessive distortion. This provides a potential route to new X-ray optics and the nanofabrication of photonic crystals. More directly, an array of such lenses could be used for simultaneously patterning prescribed features of electronic devices by electron beam lithography using organic resists that are 10⁴ to 10⁵ times more sensitive than AlF₃ (ref. 11). There seems to be little difficulty with present equipment to make, say, 1,000 lenses on a single thin substrate. Thus, in principle, electron beam production of integrated circuits can be carried out.

Received 2 February; accepted 16 April 1998.

Acknowledgements. We thank S. J. R. Grannell for the beam writing software and G. E. Rosman for his assistance and discussion on the simulation.

Correspondence and requests for materials should be addressed to J. R. Grannell (e-mail: ab1220@hermes.cam.ac.uk).

Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology

Stanislaus S. Wong, Ernesto Joselevich, Adam T. Woolley, Chin Li Cheung & Charles M. Lieber

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA

Carbon nanotubes combine a range of properties that make them well suited for use as probe tips in applications such as atomic force microscopy (AFM)⁴⁻⁵. Their high aspect ratio, for example, opens up the possibility of probing the deep crevices⁶ that occur in microelectronic circuits, and the small effective radius of nanotube tips significantly improves the lateral resolution beyond what can be achieved using commercial silicon tips⁷. Another characteristic feature of nanotubes is their ability to buckle elastically⁸,⁹, which makes them very robust while limiting the maximum force that is applied to delicate organic and biological samples. Earlier investigations into the performance of nanotubes as scanning probe microscopy tips have focused on topographical imaging, but a potentially more significant issue is the question of whether nanotubes can be modified to create probes that can sense and manipulate matter at the molecular level. Here we demonstrate that nanotube tips with the capability of chemical and biological discrimination can be created with acidic functionality and by coupling basic or hydrophobic functionalities or biomolecular probes to the carboxyl groups that are present at the open tip ends. We have used these modified nanotubes as AFM tips to titrate the acid and base groups, to image patterned samples based on molecular interactions, and to measure the binding force between single protein–ligand pairs. As carboxyl groups are readily derivatized by a variety of reactions, the preparation of a wide range of functionalized nanotube tips should be possible, thus creating molecular probes with potential applications in many areas of chemistry and biology.

Among the many reactions that can be used to derivatize carboxy (–COOH) functional groups, we have concentrated on nanotube chemical modification that involves the coupling of amines to the carboxyl groups at the tip ends to form amide-linked groups (Fig. 1a)⁵. The broad applicability of this coupling reaction to aqueous and non-aqueous chemistry makes it especially attractive for nanotube functionalization.

Open-ended nanotube tips are formed while shortening the tubes in an oxidizing environment before use. A transmission electron microscopy (TEM) image of a multi-walled nanotube tip end demonstrates that this process produces open ends (Fig. 1a, inset). Carboxyl groups are expected at these open ends on the basis of previous spectroscopic studies of oxidized bulk nanotube¹₀ and graphite¹¹,¹² samples. Such traditional analytical techniques are nevertheless limited in their ability to verify directly the functional groups at the very end of a specific tip, because in the ideal limit there will be only a single such group (–COOH). An alternative approach for assessing the functionality at a specific nanotip end is to measure the adhesion force between the tip and a surface that terminates in a known chemical functionality (that is, chemical force microscopy)¹³⁻¹⁵. Previous adhesion measurements carried out as a function of solution pH (force titrations) between gold-coated Si₃N₄ tips and substrates functionalized with self-assembled monolayers (SAMs) terminating in carboxyl and hydroxyl groups showed that the fraction of proton dissociation from the surface carboxyl groups could be readily monitored by the drop in adhesion force as in a classic pH titration¹⁶,¹⁷. If carboxyl groups do indeed exist at the nanotube ends, then they also should be able to be titrated in the same way. Force titrations between pH 2 and 9 with multi-walled nanotube tips on hydroxyl-terminated SAM substrates show a well defined drop in the adhesion force at pH ~4.5 (Fig. 1b) that is characteristic of the deprotonation of a carboxylic acid; the mid-point of this drop (4.5) is assigned to be the pKₐ. In these and all other experiments described below, the applied loads were kept below the force required for nanotube buckling to ensure that only the nanotube end contacted the surface. The observed decrease in adhesion force with increasing pH is also reversible for a given tip, and the transition is observed reproducibly for other tips. The absolute value of the adhesion force at low pH can vary between tips, and we believe that this reflects a variation in the number of carboxyl groups exposed at the ends of different tips. Last, the similarity of the value of the pKₐ determined in our force titrations (4.5) to the bulk solution value for benzoic acid (4.2) implies that the carboxyl group is well solvated and accessible to reaction¹⁸.

To investigate the covalent modification of nanotube tips we have coupled amines (RNH₂), which yield non-ionizable or ionizable functionalities on the tips, using carbodiimide chemistry that selectively forms amide linkages only with carboxyl groups (Fig. 1a)⁵,¹⁶. Nanotube tips modified with benzylamine—which should expose non-ionizable, hydrophobic functional groups at the tip end—yield the expected pH-independent interaction force on hydroxyl-terminated SAM substrates. This covalent modification thus eliminates the prominent pH-dependent behaviour observed with the unfunctionalized tips. Moreover, force titrations with ethylenediamine modified (that is, amine-functionalized) tips
show no adhesion at low pH and finite adhesion above pH 7. These pH-dependent interactions are consistent with our expectations for an exposed basic amine functionality that is protonated and charged at low pH and neutral at high pH. Although the observed pKₐ of the nanotube-bound amine (~7) is reduced relative to homogeneous solution (9–10), similar behaviour has been observed in previous studies of SAM-modified Si₃N₄ tips³⁵. Additional experiments carried out on independent tips modified using benzylamine and ethylenediamine confirm the reproducibility of these results. We believe these data thus demonstrate unambiguously that carboxyl groups are exposed at the ends of nanotube tips, and that these groups can be covalently modified to produce probes with very distinct chemical functionalities.

We have explored several areas where these tips, and our newly developed approach to covalent modification, can be applied. First, the use of functionalized nanotube probes for chemically sensitive imaging has been investigated using patterned SAM substrates (Fig. 2). We recorded intermittent-contact or tapping-mode images (Fig. 2b) in ethanol solution, using carboxyl-terminated nanotube tips on substrates patterned¹⁶ with squares that terminate in CH₃ groups and surrounded by COOH-terminated regions. The images show a difference in phase between the two sample areas, although there is no difference in height; the tip–COOH/sample–COOH regions show a phase lag relative to the tip–COOH/sample–CH₃ regions. Recent tapping-mode studies using Au-coated Si₃N₄ tips functionalized with SAMs have shown that phase-lag differences can be quantitatively related to differences in the adhesion forces, and thus can be interpreted in terms of a map of the chemical functionality²⁰. Because we expect¹³ (and indeed find) the adhesion force between the carboxyl-terminated nanotube tip and the COOH-terminated SAM to be greater than the CH₃-terminated
region, these results are consistent with chemically sensitive imaging. Furthermore, when tips are covalently modified with benzylamine, which produces a hydrophobic tip that interacts more strongly with the CH₃ than with the COOH regions of the sample, the phase contrast is reversed (Fig. 2c) as expected on the basis of the change in intermolecular interactions. In addition, control experiments carried out using the same modification procedures but without the EDC coupling reagent (see Fig. 1 legend) required for covalent bond formation show the same phase contrast as the starting tips. These imaging results demonstrate that direct covalent coupling reactions on nanotube tips, which we believe provide a more flexible and robust method of modification than SAMs, can be used to create chemically sensitive imaging probes. The resolution that we achieve in our experiments (Fig. 2) is limited by the technique used to create the patterned substrate. The multi-walled nanotubes used here can have diameters of 15–50 nm, but we have recently demonstrated that lateral resolution of <3 nm can be achieved by using COOH-terminated single-walled nanotube tips on mixed monolayer/bilayer substrates.

Covaletly modified nanotube tips also offer the possibility of probing biological systems at the nanometre scale. To illustrate this point we have studied the well characterized ligand–receptor interaction of biotin–streptavidin. 5-(biotinamido)pentylamine was covalently linked to nanotube tips by the formation of an amide bond (Fig. 3a). Force–displacement measurements (Fig. 3b) made on mica surfaces containing immobilized streptavidin show well defined binding force quanta of ~200 pN per biotin–strepavidin pair (Fig. 3c). Control experiments carried out with an excess of free biotin (which blocks all receptor sites of the protein) in solution, and with unmodified nanotube tips showed no adhesion within the noise limits of our experiments, and thus confirms that the observed binding force results from the interaction of nanotube-linked biotin with surface streptavidin. The functionalized nanotube tips usually show only single binding events of 200 pN, although with some tips it is also possible to observe events of twice this force; we attribute such events to the simultaneous binding of two biotin–streptavidin pairs. Our measured binding force quanta agree with previous AFM studies in which biotin or avidin were attached to probe tips by the non-specific adsorption of bovine serum albumin. We believe that our results show that it will be possible (by using well defined covalent chemistry) to attach individual active ligands, proteins or other macromolecules in a spatially defined manner to the ends of nanotubes, and then to use these functionalized probes to create high-resolution maps of binding domains on, for example, proteins and membranes. Such experiments would be difficult using conventional tips modified either using non-specific adsorption or with SAMs.

The covalent modification of nanotube tips enables the straightforward creation of well defined probes which are sensitive to specific intermolecular interactions that define the properties of many chemical and biological systems. In addition to the directions indicated above, we believe that functionalized nanotube tips will prove especially useful for imaging self-assembled polymeric and biological materials. In particular, recent studies in which we have extended the covalent modification procedures to single-walled nanotubes suggest the possibility of mapping functional groups with true molecular resolution. Among intriguing future applications is the use of the highly selective and robust chemistry described here to link catalysts, such as transition-metal complexes, to nanotube ends to create tools that could modify or create structures at the molecular scale. The selective functionalization of nanotube ends might also open up the possibilities of creating interconnections for electronic devices on a nanometre scale and assembling new classes of materials from nanotubes.

Received 4 March; accepted 6 May 1998.

Approximately half of plant production occurs in the oceans. As oceans are open systems, a degree of imbalance between biological production and consumption can, in principle, be sustained by the import or export of organic material. Deficits in the overall oceanic budget of organic matter must be made up by import from terrestrial, freshwater and estuarine ecosystems, mainly as river-borne material. As these inputs occur at the periphery of the ocean, their contribution is largely restricted to continental-shelf environments. This suggests that the ocean system with an organic carbon deficit. Such areas would be substantially out of balance—particularly in deficit. An analysis of net organic balance of the oceans led to the conclusion that as a whole they were slightly (~0.6%) heterotrophic, this being mainly associated with inshore regions. The open ocean was concluded to be marginally (~0.2%) autotrophic. Such small imbalances would be beyond the resolution of field rate observations. In this respect, the recent report that, in aquatic systems with production rates of less than 100 μg C l\(^{-1}\) d\(^{-1}\) (which would include large tracts of the open oceans), bacterial respiration exceeds net primary production, is unexpected. Overall mass-balance calculations obscure possible regional imbalances. I report here an analysis of 312 direct measurements of NCP and community respiration with wide geographical coverage (Table 1), and examine the data set in the context of the overall balance of metabolism. Except for three sets of \textit{in situ} observations from the north central Pacific Ocean, the data are derived from \textit{in vitro} net oxygen change and dark oxygen consumption (taken as respirations). Gross primary production (GPP) is calculated as the sum of these two processes: details of the procedures are given in refs 4–7. Combined depth profiles of NCP and GPP for six of the areas (Fig. 1) reveal no compelling evidence for the water columns under study being substantially or systematically out of balance. There is commonly an autotrophic zone of positive NCP in the upper 20 or so metres of the water column, overlying a heterotrophic zone of negative NCP, below which NCP tails off to the measurable zero rate (~0.2 μmol O\(_2\) l\(^{-1}\) d\(^{-1}\); ref. 4 and Fig. 1). Data for the Southern Ocean stations are not shown in Fig. 1, but in all stations from this region NCP is positive throughout the observational depth range (0–80 m). It is notable that most (over 85%) of the rates of gross production in the present data set fall below 100 μg C l\(^{-1}\) d\(^{-1}\) (10 μmol O\(_2\) l\(^{-1}\) d\(^{-1}\)), assuming a photosynthetic quotient of 1.0)—the level of net primary production (NPP) below which del Giorgio et al.\(^2\) concluded that aquatic systems were in carbon deficit.

As the primary source of metabolic energy (photons) enters through the surface of the oceans, the balance of energy in the environment is better considered per unit area than as discrete measurements. Depth integrations, to the bottom of the observational base (Fig. 1), using a simple trapezoidal procedure yielded 65 profiles (Table 1). The integrated rates fall into a general pattern.

Table 1 Depth-integrated rates of respiration, gross and net production for the five oceanic regions

<table>
<thead>
<tr>
<th>Oceanic area</th>
<th>Number of pairs of observations</th>
<th>Number of integrated profiles</th>
<th>Number of profiles in which integrated NCP is positive</th>
<th>Mean depth-integrated rates (mmol O(_2) m(^{-2}) d(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Ocean</td>
<td>28</td>
<td>6</td>
<td>6</td>
<td>183 ± 80</td>
</tr>
<tr>
<td>Northeast Atlantic Ocean</td>
<td>130</td>
<td>29</td>
<td>23</td>
<td>143 ± 66</td>
</tr>
<tr>
<td>Arabian Sea</td>
<td>28</td>
<td>7</td>
<td>3</td>
<td>112 ± 69</td>
</tr>
<tr>
<td>Mediterranean Sea</td>
<td>104</td>
<td>18</td>
<td>10</td>
<td>94 ± 76</td>
</tr>
<tr>
<td>North central Pacific gyre</td>
<td>22</td>
<td>5</td>
<td>3</td>
<td>47 ± 17</td>
</tr>
</tbody>
</table>

GPP: Gross primary production; NCP: Net community production; NCP as % GPP: Net community production as a percentage of gross primary production.