Synthesis and Characterization of New Binuclear Electron-Transfer Models Containing Rigid Aromatic Spacers

Yun Kim and Charles M. Lieber*

Received March 15, 1989

A series of new binuclear ruthenium-electron-transfer models has been prepared. The ruthenium centers are linked via rigid aromatic spacers that allow the metal-metal separation to be varied between 8 and 20 Å. Visible spectra recorded for the series of Ru(II)-spacer-Ru(II) complexes show a blue-shift in the MLCT transition with increasing metal-metal distance. Cyclic voltammograms of these model compounds exhibit peak to peak separations that are larger than expected for a reversible one-electron process. The peak to peak separations also decrease with increasing metal separation. In addition, broad intervalence absorptions are observed for the mixed-valence species, although no well-defined peaks are detected. These results suggest that the ruthenium centers interact weakly in these new models and that aromatic spacers alone are not sufficient to promote strong electronic coupling.

Introduction

Long-range electron-transfer reactions (eq 1) are currently the focus of intense study because of their key role in important biological processes such as photosynthesis and respiration.1

\[
D-\text{spacer-}A \rightarrow D' \text{- spacer-} A^-\quad (1)
\]

Particularly relevant to the study of the influence of the intervening protein medium or spacer (SPA) (e.g., aliphatic vs aromatic amino acids) is the effect of the magnitude of the electronic coupling between a donor (D) and an acceptor (A).2 For example, fast electron-transfer rates in complexes in which the metal centers are bridged by rigid aromatic spacers have been attributed to enhanced donor-acceptor electronic coupling mediated by aromatic groups lying between the electron-transfer centers.3-5

One approach that has been utilized to probe the mechanism of donor-acceptor electronic coupling involves evaluating the distance dependence of electron transfer in model complexes.6-10

Studies of organic donor-acceptor pairs bridged by rigid aliphatic4 and aromatic7 spacers suggest that direct or "through-bond" interactions with the spacer enhance the electronic coupling relative to an isotropic medium.9 The distance dependence of long-range electron transfer has also been investigated for inorganic models that consist of two metal centers bridged by aliphatic spacers,10 polypeptides,11 and other groups.12-16 The effect of the spacer on electronic coupling is not, however, well-understood for systems in which the metal centers are separated by large (<10 Å) distances. To understand better the importance of the spacer, we have initiated studies on a series of new binuclear ruthenium complexes in which the metal centers are bridged by rigid variable-length aromatic spacers (Fig. 1). An attractive feature of these new systems is that the metal-metal separation is well-defined and variable over a wide range of distances. For example, in the Ru-4SPA-Ru system the metal-metal separation varies from 11 to 20 Å for n = 0-2, respectively. Herein we report the preparation and characterization of these new binuclear ruthenium complexes as well as preliminary studies of the inter-valence charge-transfer transition in the mixed-valence complexes.

Experimental Section

Materials. The 3SPA1n and 4SPA1n (n = 1, 2) bifunctional ligands (figure 1) were prepared via a palladium-catalyzed coupling of 2 equiv of 3-(trimethylsilyl)pyridine or 4-(trimethylsilyl)pyridine with 1 equiv of 1,4-dibromobenzene or 4,4'-dibromobiphenyl as described elsewhere.17-19 The water used in all experiments was purified by using a Barnstead Nanopure ion-exchange system. Acetonitrile used for the spectrometric measurements was HPLC grade. All other materials were reagent grade and used without further purification.

Preparation of Metal Complexes. The binuclear pentaamine-ruthenium(II) complexes were prepared by the reaction of [NH4]2[Ru(H2O)](PF6)2 with the appropriate ligand in acetonitrile. The method of Meyer et al. was used to prepare [NH4]2[Ru(H2O)](PF6)2. For example, 0.25 g of [Ru(NH3)4Cl2]Cl2 in 15 mL of degassed 0.1 M H2SO4 was reduced under argon with zinc amalgam.

(18) Kim, Y.; Lieber, C. M. To be submitted for publication.
The ruthenium(I) aquo complex was precipitated by the addition of 5 mmol of 4SPA1 to 30 mL of argon-degassed acetone. Under a steady flow of argon, 0.18 g (0.35 mmol) of solid [(NH₃)₂Ru(H₂O)](PF₆)₂ was added, and the substitution reaction was allowed to proceed with stirring in the dark for 48 h. After 15 mL of the solvent was evaporated under an argon flow, the crude product was precipitated from solution by the addition of 30 mL of degassed acetone. The yellow product (stored in vacuo) was used within a week of its preparation.

The typical procedure used to prepare the binuclear complexes is described for the case of the 4SPA1 bridging ligand. First, 0.04 g (0.17 mmol) of 4SPA1 was dissolved in 30 mL of argon-degassed acetonitrile. Under a steady flow of argon, 0.18 g (0.35 mmol) of solid [(NH₃)₂Ru(H₂O)](PF₆)₂ was added, and the substitution reaction was allowed to proceed with stirring in the dark for 48 h. After 15 mL of the solvent was evaporated under an argon flow, the crude product was precipitated from solution by the addition of 30 mL of degassed ether. This reaction product, which contained some monomer species, was recrystallized twice from acetonitrile/toluene as described previously.19 The final yield of pure complex was 0.14 g (68%). Anal. Calcd for [(NH₃)₅Ru-3SPA1-Ru(NH₃)₅][PF₆]·2H₂O: C, 20.96; H, 3.68; N, 13.33.

The other new binuclear pentaamminerruthenium(II) complexes were also prepared by using the above procedure. Satisfactory elemental analyses were obtained in all cases. Anal. Calcd for [(NH₃)₂Ru-3SPA1-Ru(NH₃)₅][PF₆]: C, 16.22; H, 3.55; N, 14.19; Ru, 17.06; F, 38.51; P, 9.03. Found: C, 16.29; H, 3.76; N, 13.61; Ru, 16.86; F, 38.69; P, 9.03.

Instrumentation and Methods
Cyclic voltammetry and differential-pulse polarography measurements were made by using a PAR Model 273 potentiostat/galvanostat and a PAR Model 174 polarographic analyzer, respectively. All of the electrochemical experiments were carried out using an argon-purged three-electrode cell with a gold-button working electrode, platinum-wire counter electrode, and saturated calomel (SCE) reference electrode. The concentration of the ruthenium complex in these solutions was monitored using a Shimadzu Model UV-200 spectrophotometer in 10-mm quartz cells.

Results and Discussion

Table I. Spectroscopic and Electrochemical Properties of RuII-3SPA1-RuII and RuII-3SPA2-RuII Complexes

<table>
<thead>
<tr>
<th>L</th>
<th>n</th>
<th>π*−π*</th>
<th>MLCT</th>
<th>E1/2(V)</th>
<th>d(M–M, Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,4'-bipyridine</td>
<td>0</td>
<td>249 (4.18)</td>
<td>521 (4.42)</td>
<td>0.128</td>
<td>11.3</td>
</tr>
<tr>
<td>4SPA1</td>
<td>1</td>
<td>281 (4.36)</td>
<td>485 (4.31)</td>
<td>0.089</td>
<td>15.6</td>
</tr>
<tr>
<td>4SPA2</td>
<td>2</td>
<td>301 (4.13)</td>
<td>467 (4.02)</td>
<td>0.074</td>
<td>19.9</td>
</tr>
<tr>
<td>3,3'-bipyridine</td>
<td>0</td>
<td>236 (4.22)</td>
<td>429 (4.24)</td>
<td>0.120</td>
<td>7.8–9.7</td>
</tr>
<tr>
<td>3SPA1</td>
<td>1</td>
<td>280 (4.51)</td>
<td>417 (4.24)</td>
<td>0.093</td>
<td>12.1–13.5</td>
</tr>
<tr>
<td>3SPA2</td>
<td>2</td>
<td>298 (4.62)</td>
<td>415 (4.17)</td>
<td>0.089</td>
<td>16.4–17.5</td>
</tr>
</tbody>
</table>

The spectra were normalized by using the absorbance at the MLCT maxima of the complexes.

All spectra were recorded in acetonitrile by using the PF₆⁻ salts of the compounds. 8 Versus SCE; aqueous solution, 0.1 M NaCl supporting electrolyte. 9 Reference 16.

Figure 2. Visible spectra of the RuIII-3SPA1-RuIII complexes recorded in acetonitrile: n = 0 (---); n = 1 (- - -); and n = 2 (-----). The spectra were normalized by using the absorbance at the MLCT maxima of the complexes.

The spectra can be attributed to changes in the π*-pyridine energy levels since the dπ–ruthenium energy levels are the same (to first order) in the RuII-II-3SPA1-RuII and RuII-II-3SPA2-RuII complexes. Specifically, electronic coupling between the two terminal pyridine π-systems will split the π* levels energetically, and therefore the MLCT transition will blue-shift as this electronic coupling decreases.6 Our data indicate that the pyridine–pyridine coupling decreases more in the RuII-II-3SPA1-RuII complexes than in the RuII-II-3SPA2-RuII complexes as n increases from 0 to 2 and that for a given value of n (or spacer length), the interaction is stronger in the 4-substituted system.

Cyclic voltammograms of the RuII-3SPA1-RuII and RuII-3SPA2-RuII complexes exhibit single oxidation–reduction waves. The anodic–cathodic peak separations in the voltammograms were, however, greater than expected for an ideal 1-electron reversible redox couple (Table I).23 The increases in peak to peak separations for the RuII-3SPA1-RuII and RuII-3SPA2-RuII complexes and 14 (n = 1) and 7 mV (n = 2) for the RuII-II-3SPA1-RuII complexes and 14 (n = 1) and 6 mV (n = 2) for the RuII-II-3SPA2-RuII models.24 Deviations from ideality are also observed in differential-pulse polarograms of the compounds. The deviations observed in the voltammograms and polarograms indicate that oxidation of the two ruthenium centers does not occur independently.

In principle, the electronic interaction between the two metal sites can be determined from the stability of the mixed-valence RuII-II-3SPA1-RuII complex relative to the fully reduced and oxidized species RuII-3SPA1-RuII and RuII-II-3SPA2-RuII, respectively (eq 2).25 The stability of the mixed-valence product, as measured RuII-3SPA1-RuII + RuII-II-3SPA2-RuII = 2RuII-II-3SPA1-RuII

References

(24) The increase in peak to peak separation for the RuII-II-3SPA1-RuII and RuII-II-3SPA2-RuII systems was calculated relative to the models [(NH₃)₂Ru4-Phpy) and (NH₃)₅Ru3-Phpy) to correct for nonideality in the electrochemical cell. The deviations were independent of scan rate between 20 and 100 mV/s.

calization since statistical and electrostatic factors also contribute via chemical oxidation using Ce(IV). Typical examples of the intervalence peak, although there is a well-defined increase in absorbance in the near-IR region that is lost when the complex is oxidized to the RuII-SPA-$RuIII state. The most direct measure of the metal-metal electronic coupling in a mixed-valence system is the intensity and band shape of the intervalence transition since these spectral properties can be used to directly calculate the electronic matrix element. The most recent evidence suggests that the ruthenium centers in these models interact only through the σ-system in these compounds?* More recently, relatively intense intervalence transitions observed in ruthenium–alkene systems have been attributed to favorable π-interaction through the alkene bridging group. The weak, broad near-IR absorptions that we observe in the mixed-valence RuII-SPA-$RuIII complexes imply that electronic coupling is weak in these aromatic systems. Alternatively, broad absorptions would be observed if the RuII-SPA-$RuIII complexes have several distinct conformations in solution (each with a different λ_{inter}), although we believe that this is unlikely. Weak coupling in these aromatic systems is not unexpected (even though the ruthenium centers have a strong charge-transfer interaction with the π-systems of the pyridine end groups) because the pyridine-phenyl and phenyl-phenyl π-system coupling is weak. It is interesting to note that strong coupling has been reported with similar bridging groups that link organic donor–acceptor pairs. The electronic interaction in these systems is believed, however, to be transmitted through the σ-system.

In summary, we have prepared and characterized a new series of long-range ET models based on variable-length aromatic spacers. Our spectroscopic and electrochemical measurements show that the ruthenium centers in these models interact only weakly. Hence, these results suggest that aromatic groups do not necessarily promote an unusually strong electronic coupling between redox centers. Further studies designed to quantify the electronic interaction in these new systems and to probe the orientation dependence of the coupling are in progress.

Acknowledgment. This work was supported by the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the NSF Presidential Young Investigator Program (Grant CHE-8857194).

29. The intensities and positions of the near-IR peaks reported in this work exhibit surprisingly little variation with distance.
30. We note that the full width at half-maxima (fwhm) for the MLCT transitions in the Ru-SPA-Ru compounds are comparable to that found for (NH$_4$)$_2$Ru$_2$ppy, a rigid system. Since it is known that λ_{int} (MLCT) will blue-shift as the pyridine–pyridine orientation approaches 90°, we believe that distinct rotomers are unlikely because a superposition of their MLCT bands would lead to larger fwhms than are observed.
31. Although the relative orientation of the aromatic rings is not fixed, previous studies indicate that adjacent rings will be rotated ca. 40° relative to each other. Hence, the π-π overlap between rings will be weak.

Figure 3. (A) UV–visible spectra recorded in acetonitrile by using a 5 cm cell for the RuII-SPA-$RuII (---), RuII-$SPA$-$RuIII (----), and RuII-SPA-$RuIII (--). The total concentration was 1×10^{-3} M. (B) Near-IR spectra recorded in situ in a 5-cm cell as the RuII-SPA-$RuIII complex was oxidized in DMSO-d_6 with Ce(IV). The total concentration was 6×10^{-4} M.

Figure 4. Near-IR spectra of the RuII-SPA-$RuII (---), RuII-$SPA$-$RuIII (----), and RuII-SPA-$RuIII (---) complexes recorded in a 5-cm cell. The total concentration of complex was 4×10^{-3} M.