What ultra-tiny nanocircuits can do
Harvard, MITRE researchers produce first programmable nanoprocessor

By Caroline Perry
SEAS Communications
Wednesday, February 9, 2011

Engineers and scientists collaborating at Harvard University and the MITRE Corp. have developed and demonstrated first programmable nanoprocessor.

The groundbreaking prototype computer system, described in a paper appearing today (Feb. 9) in the journal *Science*, represents a significant step forward in the complexity of computer circuits that can be assembled from synthesized nanometer-scale components. It also represents an advance because these ultra-tiny nanocircuits can be programmed electronically to perform a number of arithmetic and logical functions.

“This work represents a quantum jump forward in the complexity and function of circuits built from tiny nanowires, which is distinct from the way commercial circuits are built today, can yield integrated systems of the future,” says principal investigator Charles M. Lieber, who holds a joint appointment at Chemistry and Chemical Biology and School of Engineering and Applied Sciences.

The work was enabled by advances in the design and synthesis of nanowire building blocks. These nanowires now offer the reproducibility needed to build functional electronic circuits, and also do so at a size and material complexity difficult to achieve with traditional top-down approaches.

Moreover, the tiled architecture is fully scalable, allowing the assembly of much larger and ever more complex circuits.

“For the past 10 to 15 years, researchers working with nanowires, carbon nanotubes, and other nanostuctures have struggled to produce the most basic circuits, in large part due to variations in properties of individual nanostructures,” says
of Chemistry. “We have shown that this limitation can now be overcome and are excited about prospects of exploiting the paradigm of biology in building future electronics.”

An additional feature of the advance is that the circuits in the nanoprocessor operate using very little power, even allowing for minuscule size, because their component nanowires contain transistor switches that are “nonvolatile.” This means that unlike transistors in conventional microcomputer circuits, once the nanowire transistor is programmed, it requires no additional expenditure of electrical power for maintaining memory.

“Because of their very small size and very low power requirements, these new nanoprocessor circuits enable an entirely new class of much smaller, lighter-weight electronic sensors and consumer electronics,” says co-author Shaobing Das, lead engineer in MITRE’s Nanosystems Group.

“This new nanoprocessor represents a major milestone toward realizing the vision of a nanocomputer years ago by physicist Richard Feynman,” says James Ellenbogen, a chief scientist at MITRE.

Co-authors on the paper included four members of Lieber’s lab at Harvard — Hao Yan, Ph.D. ’10, Sungwoo Nam, Ph.D. ’10, and doctoral candidate Hwan Sung Choe, as well as collaborators at MITRE.

The research team at MITRE comprised Das, Ellenbogen, and nanotechnology laboratory Director Jin Klemic. The not-for-profit company that provides systems engineering, research and development, and information technology support to government. MITRE’s principal locations are in Bedford, Mass., and McLean, Va.

The research was supported by a Department of Defense National Security Science and Engineering Faculty Fellowship, the Nanotechnology Initiative, and the MITRE Innovation Program.